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Abstract  
The electrostatic, electrodynamic and electromagnetic systems of units utilized during last 
century by Ampère, Gauss, Weber, Maxwell and all the others are analyzed. It is shown how 
the constant c was introduced in physics by Weber's force of 1846. It is shown that it has the 
unit of velocity and is the ratio of the electromagnetic and electrostatic units of charge. Weber 
and Kohlrausch's experiment of 1855 to determine c is quoted, emphasizing that they were 
the first to measure this quantity and obtained the same value as that of light velocity in 
vacuum. It is shown how Kirchhoff in 1857 and Weber (1857-64) independently of one 
another obtained the fact that an electromagnetic signal propagates at light velocity along a 
thin wire of negligible resistivity. They obtained the telegraphy equation utilizing Weber’s 
action at a distance force. This was accomplished before the development of Maxwell’s 
electromagnetic theory of light and before Heaviside’s work. 
 

1. Introduction 
In this work the introduction of the constant c in electromagnetism by Wilhelm 
Weber in 1846 is analyzed. It is the ratio of electromagnetic and electrostatic units 
of charge, one of the most fundamental constants of nature. The meaning of this 
constant is discussed, the first measurement performed by Weber and Kohlrausch in 
1855, and the derivation of the telegraphy equation by Kirchhoff and Weber in 
1857. Initially the basic systems of units utilized during last century for describing 
electromagnetic quantities is presented, along with a short review of Weber’s 
electrodynamics. An earlier discussion of these topics has been given.1 
 
 

 
1 ASSIS (2000a) 
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2. Forces of Nature 
The first definition of Newton’s book Mathematical Principles of Natural 
Philosophy of 1687, usually known by the first Latin name, Principia, is that of 
quantity of matter. He defined it as the product of the density and volume of the 
body. He says:  

It is this quantity that I mean hereafter everywhere under the name of body or mass.2  

This magnitude is called nowadays the inertial mass of the body. His second 
definition is that of quantity of motion, the mass of a body times its velocity relative 
to absolute space. His third definition is that of inertia or force of inactivity:  

The vis insita, or innate force of matter, is a power of resisting, by which every body, as 
much as in it lies, continues in its present state, whether it be of rest, or of moving 
uniformly forwards in a right line.  

His second law of motion states:  
The change of motion is proportional to the motive force impressed; and is made in the 
direction of the right line in which that force is impressed.  

Representing this force in terms of vectors by F
r

, the inertial mass by im  and 
the velocity of the body relative to absolute space or to an inertial frame of reference 
by 

rv , the second law can be written as  
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where 1K  is a constant of proportionality.  
According to the law of universal gravitation the force exerted by a gravitational 

mass 'gm  on another gravitational mass gm  separated by a distance r is given by 
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Here 2K  is a constant of proportionality and r̂  is the unit vector pointing from 
'gm  to gm . This force is along the straight line connecting the masses and is 

always attractive.  

 
2 NEWTON (1934). 
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The gravitational force on a particle of gravitational mass gm  due to other 
masses can be written as  
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Here 
rg  is called the gravitational field acting on gm  due to all the masses 'gm . 

It is the force per unit gravitational mass.  
The electrostatic force between two point charges e and e’ is proportional to their 

product and inversely proportional to the square of their distance r. With a 
proportionality constant 3K  this can be written as: 
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The force is along the straight line connecting the charges and is repulsive 

(attractive) if )0'( 0' <> eeee .  
The force on a charge e due to several charges 'e  can be written as  
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Here E
r

 is called the electric field acting on e due to all the charges e’. It is the 
force per unit charge. 

The force between two magnetic poles p and p’ separated by a distance r is given 
by a similar expression: 
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(4) 

 
In the case of long thin bar magnets, the poles are located at the extremities. 

Usually a north pole of a bar magnet (which points towards the geographic north of 
the earth) is considered positive and a south pole negative. There will be a force of 
repulsion (attraction) when )0'( 0' <> pppp . It is also along the straight line 
connecting the poles. 

The force on a magnetic pole p due to several other poles 'p  can be written as  
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Here B
r

 is called the magnetic field acting on p due to all the poles p’. It is the 
force per unit magnetic pole. 

Between 1820 and 1826 Ampère obtained the force between two current 
elements. He was led to his researches after Oersted’s great discovery of 1820 that a 
current carrying wire affects a magnet in its vicinity. Following Oersted’s discovery, 
Ampère decided to consider the direct action between currents. From his 
experiments and theoretical considerations he was led to his force expression. If the 
circuits carry currents i and i’ and the current elements separated by a distance r 
have lengths ds and ds’, respectively, Ampère's force is given by (with a 
proportionality constant 5K ): 
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In this expression θ  and '  θ  are the angles between the positive directions of 

the currents in the elements and the connecting right line between them, ε  is the 
angle between the positive directions of the  currents in the elements, r̂  is the unit 
vector connecting them, sdr  and 'sdr  are the vectors pointing along the direction of 
the currents and having magnitude equal to the length of the elements. 

After integrating this expression Ampère obtained the force exerted by a closed 
circuit C’ where flows a current i’ on a current element sidr  of another circuit as 
given by: 
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A simple example is given here. Integrating this expression to obtain the force 

per unit length, dsdF / , due to the interaction between two straight and parallel 
wires carrying currents i and i’ and separated by exerted by a distance l  is given by 
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This force is attractive (repulsive) if the currents flow in the same (opposite) 
directions. A modern discussion of Ampère’s force between current elements, its 
integration for different geometries and a comparison with the works of Biot-Savart, 
Grassmann and Lorentz can be found in Bueno and Assis.3 
 

3. Systems of Units 

The numerical values and dimensions of the proportionality constants 1K  to 5K  
can be chosen arbitrarily. Each choice will influence the numerical values and 
dimensions of the corresponding physical quantities: inertial mass, gravitational 
mass, electrical charge, magnetic pole and electric current. The only requirement is 
that all the forces (1) to (5) have the same dimensions. One possibility, for instance, 
is to put 154321 ===== KKKKK  dimensionless and then adapt the 

dimensions of ipemm gi  and  , , ,  appropriately. Here different options which have 
been made in the development of physics are discussed.  

Combining Eqs. (1) and (2) and analyzing the free fall of a body of constant 
mass near the surface of the earth (gravitational mass gem  and radius er ) yields the 

acceleration of fall as: )/)(/)(/( 2
11121 egEig rmmmKKa −= . The ratio of the free 

fall acceleration of body 1 to the free fall acceleration of body 2 at the same spot on 
the earth’s surface is then given by )//()/(/ 221121 igig mmmmaa = . It is an 
experimental fact discovered by Galileo that two bodies fall freely near the earth’s 
surface with the same acceleration ( 21 aa = ), no matter their weight, chemical 
composition, form etc. This means that the inertial mass of any body is proportional 
to the gravitational mass of this body, namely: gi mKm 6= , where 6K  is a 
proportionality constant with the same value for all bodies. Combining this with Eq. 
(2) yields the gravitational force as:  
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That is, the gravitational force between two bodies is proportional to the product 

of their inertial masses and inversely proportional to the square of their distance. 
Newton presented this law in the Principia in terms of these proportionalities. 

 
3 BUENO and ASSIS (2001). 
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I discuss now the proportionality constants 1K , 2K  and 6K . The first one of 

them, 1K , is usually chosen equal to one dimensionless. Supposing a constant mass 
during the motion this yields Newton's second law in the usual form amF i

rr
= . Here 

dtvda /rr =  is the acceleration of the body relative to absolute space or to any 
inertial frame of reference, that is, to any frame of reference which moves with 
constant velocity relative to absolute space. If the force F

r
 is constant during the 

time t, this equations yields == imFa /
rr constant and tavv o

rrr += , where ovr  is 
the initial velocity of the body.  

The unit force is then that constant force which when it acts upon the unit of 
inertial mass imparts to this mass a unit of velocity in unit of time.4 

Usually the basic magnitudes of mechanics are chosen to be the inertial mass, 
length and time; with the other magnitudes (velocities, accelerations, moment etc. 
based on these 3 magnitudes). Gauss and Weber used to consider milligrams, mg, 
millimeters, mm, and seconds, s, as their basic magnitudes. In the cgs system they 
are gram, g, centimeter, cm, and second, s. In the International System of Units 
MKSA they are kilogram, kg, meter, m, and second, s. Representing these 
dimensions by ][ iM , ][L  and ][T . With 11 =K  dimensionless, the dimension of 

force is then given by [ ]2−LSM i . 
Newton estimated the mean density of the earth as between 5 and 6 times the 

water density. With the measurement of Cavendish for the gravitational force 
between two globes (utilizing a torsion balance) it was possible to obtain the precise 
value of the mean density of the earth ( 33105.5 −×= kgm ). Combining this value 
with the measurement of the free fall acceleration near the earth’s surface and the 
value of its radius, it is possible to obtain from Eq. (6) the value of 

231112
62 1067.6/ −−−×= smkgKK . Usually this is represented by G, called the 

gravitational constant.  
In one system of units 121 == KK  dimensionless. The unit of gravitational 

mass is then defined as the mass which acting on another equal unit gravitational 
mass separated by a unit of distance generates a unit force. In this case: 

ig mGm = .5 

In another system of units, the so-called astronomical system, 1/ 2
621 == KKK  

dimensionless. In this case the dimension of inertial mass is given by ][ 23 −SL  and is 

 
4 WEBER (1872), especially p. 2. 
5 PALACIOS (1964). 
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not considered any more an independent magnitude, as it can be deduced or derived 
from the dimensions of length and time.  

The first system of units applicable to electric quantities to be considered here is 
the electrostatic. In this system 13 =K  dimensionless and the dimension of the 
charges e and e’ is called electrostatic unit, esu. Two equal charges e = e’ are said to 
have unit magnitude when they exert upon one another a unit force when separated 
by a unit distance. 

The second system of units utilized during the XIXth century is the 
electromagnetic system of units. In it 14 =K  dimensionless and the dimension of 
the magnetic poles p and p’ is called electromagnetic unit, emu. Once more two 
equal magnetic poles p = p’ are said to have unit magnitude when exert a unit of 
force when separated by a unit distance. Gauss in 1832 was the first to introduce this 
system of units with 14 =K .6 
For a biography of Gauss with many references, see Reich.7 

The physical connection between magnetic pole and current was given by 
Oersted’s experiment of 1820. That is, he observed that a galvanic current orients a 
small magnet in the same way as others magnets (or the earth) do.  

From Ampère’s force law it is possible to obtain a mathematical connection 
between these two concepts. This is done writing the integrated expression of 
Ampère’s force as 
 

,BsidFd
rrr

×=   
 
where B

r
 is called the magnetic field generated by the closed circuit C’. It is only 

possible to call it a magnetic field by Oersted’s experiment. That is, the force 
exerted on a unit magnetic pole located at the same place as sidr  by the current 
carrying circuit C’ is given by this magnetic field. This means that p and ids have 
the same units.  

Comparing the magnetic field of this equation with that given by magnetic 
poles yields  
 

.54 KK =   

 
Alternatively it is possible to compare a magnetic pole and a galvanic current (or 

connect the constants 4K  and 5K ) considering the known fact described by 
Maxwell in the following words:  

 
6 GAUSS (1832). 
7 REICH (1977). 
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It has been shown by numerous experiments, of which the earliest are those of Ampère, 
and the most accurate those of Weber, that the magnetic action of a small plane circuit at 
distances which are great compared with the dimensions of the circuit is the same as that 
of a magnet whose axis is normal to the plane of the circuit, and whose magnetic moment 
is equal to the area of the circuit multiplied by the strength of the current.8  

The expression magnetic action can be understood here as the force or torque of 
the small circuit or of the small magnet acting on another small magnet. It is also 
possible to say that the magnetic field exerted by this small circuit is the same as 
that generated by the small magnet, provided that 
 

.ˆˆ uiAp =ll   

 
Here i is the current of the small plane circuit of area A and  normal unit vector 

$u , p is the magnetic pole of the small magnet of length l  and l̂  points from the 
south to the north pole, l

r
ll pp =ˆ  being the magnetic moment of the magnet. As l  

has the unit of length and A has the unit of length squared, the ratio of p/i has the 
unit of length. 

Ampère, who obtained for the first time a mathematical expression for the force 
between current-carrying circuits utilized what is called the electrodynamic system 
of units. In this system 2/154 == KK  dimensionless and the currents are 
measured in (or its units and dimensions are) electrodynamic units. On the other 
hand, in the electromagnetic system 154 == KK  dimensionless and the currents 
are measured in electromagnetic units.9 

The electrodynamic system of units was adopted by Ampère but has since been 
abandoned. In any event it is relevant to compare the currents in electrodynamic and 
in electromagnetic measures. The strengths of the currents in electrodynamic 
measure can be represented by j and j’, and the same currents in electromagnetic 
measure can be represented by i and i’. By the fact that 15 =K  in the 

electromagnetic system and that 2/15 =K  in the electrodynamic system the 

following relation is obtained: ' ' 2/ iijj =  or ij  2= , if there is the same current 
in both wires (i = i’ and j = j’). In order to compare the unit current in 
electromagnetic measure with the unit current in electrodynamic measure, it is 
convenient to consider the previous example of two parallel wires carrying the same 
current. The force per unit length (dF/ds’) between them if they are separated by a 
unit distance is given by 2 force units per length unit if i = i’ = 1 unit 
 
8 MAXWELL (1954), article 482, p. 141. 
9 TRICKER (1965), pp. 25, 51, 56 and 73. 
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electromagnetic current, remembering that 15 =K  in electromagnetic measure. On 
the other hand, if j = j’ = 1 unit electrodynamic current, dF/ds’ = 1 force unit per 
length unit, if they are separated by a unit distance, remembering that 2/15 =K  in 
electrodynamic measure. This means that in order to generate the same effect as one 
electromagnetic unit of current (that is, to have the same force between the wires), it 
is necessary to have 2  electrodynamic units of current. Hence the unit current 
adopted in electromagnetic measure is greater than that adopted in electrodynamic 
measure in the ratio of 2  to 1.10,11 That is, although ij  2= , a unit 
electromagnetic unit of current is equal to (has the same effect of, or generates the 
same force of) 2  units of electrodynamic current. 

The connection between the electric currents (or between the units of charge) in 
electrostatic and in electromagnetic units is considered below. 

In the International System of Units MKSA the basic dimensions for length, 
mass, time and electric current are given by meter (m), kilogram (kg), second (s) and 
Ampère (A). Forces are expressed in the dimension Newton ( 211 −= kgmsN ) and 
electric charges in Coulomb (1C = 1As). In this system the constants discussed in 
this work are given by: 1K  = 1 dimensionless and 

22112
62 1067.6/ −−×== kgNmGKK . Moreover, )4/(13 oK πε= , where 

212121085.8 −−−×= mNCoε  is called the permittivity of free space. The constant 

)4/(54 πµoKK == , where µ o  is called the vacuum permeability. By definition 

its value is given by 27104 −−×= kgmCo πµ . In this case the dimensions of the 

magnetic poles p and p’ are Am = Cm/s. The constant c is related with oε  and oµ  

by ooc εµ/1= . Of these three constants ( oε , µ o  and c), only one is measured 

experimentally, c. The value of oµ  is given by definition, with oε  is obtained by 

)/(1 2
oo c µε = . 

 

4. Weber’s Electrodynamics 
The fundamental law is now discussed describing the interaction between charges 
formulated by Wilhelm Weber (1804-1891). Weber’s complete works can be found 

 
10 MAXWELL (1954), article 526, p. 173. 
11 TRICKER (1965), p. 51. 
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in: Weber (1892-94).12 For a biography of Weber see Wiederkehr.13 A modern 
discussion of Weber’s force applied to electromagnetism and gravitation, with 
which it is possible to implement Mach’s principle, with many references to be 
found in Assis14,15 and Bueno and Assis.3 

In order to unify electrostatics (Coulomb’s force of 1785) with electrodynamics 
(Ampère’s force between current elements of 1826) and with Faraday’s law of 
induction (1831), Wilhelm Weber proposed in 1846 the following force between 
two point charges e and e’ separated by a distance r: 
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In this equation dtdrr /=& , 22 / dtrdr =&&  and a is a constant which Weber 

only determined 10 years later. The charges e and e’ may be considered as localized 
at 1r

r
 and 2r

r
 relative to the origin O of an inertial frame of reference S, with 

velocities and accelerations given by, respectively, dtrdv /11
rr = , 

r rv dr dt2 2= / , 
dtvda /11

rr =  and 
r ra dv dt2 2= / . The unit vector pointing from 2 to 1 is given by 

||/)(ˆ 2121 rrrrr rrrr −−= . In this way )()(|| 212121 rrrrrrr rrrrrr −⋅−=−= , 

)(ˆ 21 vvrr rr
& −⋅=  and 

( ) raarrvvrvvvvr /)]()()(ˆ)()[( 2121
2

212121
rrrrrrrrrr

&& −⋅−+−⋅−−⋅−= . Weber wrote 
this equation with K3 1=  dimensionless and without vectorial notation. 

By 1856 Weber was writing this equation with c instead of 4/a. But Weber’s c = 
4/a is not the present day value smc /103 8×= , but 2  this last quantity. To avoid 
confusion with the modern c, and following the procedure adopted by Rosenfeld.16 
Weber’s 4/a will be represented here by cW . This means that by 1856 Weber was 
writing his force law as the middle term below (the term on the right hand side is the 
modern rendering of Weber’s force with the present day value of c): 
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12 WEBER (1892-4). 
13 WIEDERKEHR (1967). 
14 ASSIS (1994). 
15 ASSIS (1999a). 
16 ROSENFEL (1957). 
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If there is no motion between the point charges, 0=r&  and 0=r&& , Weber’s law 

reduces to Coulomb’s force. This means that the whole of electrostatics (Gauss’s 
law etc.) are embodied in Weber’s electrodynamics. 

Weber knew in 1846 Coulomb’s force between point charges and Ampère’s 
force between current elements. He arrived at his force from these two expressions 
and a connection between current and charges. A description of his procedure can 
be found in his work and also in Maxwell and Whittaker’s books:Weber,17 
Maxwell18 and Whittaker.19 Here the opposite approach is followed, namely, 
beginning with Weber's force in order to arrive at Ampère’s force. 

Consider then the force between two current elements, 1 and 2. The positive and 
negative charges of the first one are represented by +1de  and −1de , while those of 
element 2 are +2de  and −2de . Supposing that they are electrically neutral yields 

+− −= 11 dede  and de de2 2− += − . As a matter of fact there is always some net 
charge inside and along the surface of resistive wires, but the effects produced by 
these charges are usually small,20 which means that this is a reasonable 
approximation. Adding Weber's force exerted by the positive and negative charges 
of the neutral element 1 on the positive and negative charges of the neutral element 
2 yields:21 
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In order to arrive at Ampère’s force from this expression a relation between 

current and charge is necessary. The commonly accepted definition of current is the 
time rate of change of charge, that is, a current is the amount of charge transferred 
through the cross section of a conductor per unit time: 
 

.
dt
dei =  

 

 

 
17 WEBER (1966). 
18 MAXWELL (1954), chapter XXIII. 
19 WHITTAKER (1973), pp. 201-3. 
20 ASSIS, RODRIGUES , and MANIA (1999). 
21 ASSIS (1994), section 4.2. 
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If the charge is measured or expressed in electrostatic, electromagnetic or 
electrodynamic units, the current will also be measured or expressed in electrostatic, 
electromagnetic or electrodynamic units, respectively.22  

Applying this definition in Ampère’s expression for the force between current 
elements, Eq. (5), and comparing it with Eq. (3) yields a relation between the 
dimensions of 3K  and 5K . That is, the ratio 53 / KK  has the unit of a velocity 
squared. It is independent of the units of electric and magnetic quantities and is a 
fundamental constant of nature. 

Fechner and Weber supposed in 1845-46 that galvanic currents consist of an 
equal amount of positive and negative charges moving in opposite directions with 
the same velocity relative to the wire.23 Nowadays it is known that the usual currents 
in metallic conductors are due to the motion of only the negative electrons. But it is 
possible to derive Ampère’s force from Weber’s one even without assuming 
Fechner’s hypothesis, (Wesley,24 Assis25,26). 

Utilizing i = de/dt and dtsdv /rr =  in the expression for the force between current 
elements yields  
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This will be Ampère’s force provided 5
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As has been said before, integrating Ampère’s expression for the force exerted 

by an infinitely long straight wire carrying a constant i’ acting on a current element 
ids parallel and at a distance l  to it is given by 
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22 MAXWELL (1954), articles 231, 626 and 771. 
23 WHITTAKER (1973), p. 201. 
24 WESLEY (1990). 
25 ASSIS (1990). 
26 ASSIS (1994), section 4.2. 
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Utilizing electrostatic units ( 13 =K  dimensionless), the force per unit length 

(dF/ds’) between them if they are separated by a unit distance is given by 2/2 c  
force units per length unit if i = i’ = 1 electrostatic unit. On the other hand it was 
shown above that in electromagnetic units if i = i’ = 1 electromagnetic unit than 
dF/ds’ will be given by 2. For the current in electrostatic units generate the same 
force per unit length its magnitude needs to be given by c units. This means that c is 
the ratio of electromagnetic and electrostatic units of current, or the ratio of 
electromagnetic and electrostatic units of charge. 

For this reason it is possible to write 
 

.measure ticelectrosta
measure neticelectromag c

de
de =  

 

 
Alternatively it might also be said that c is the number of units of static 

electricity which are transmitted by the unit electric current in the unit of time. That 
is, if two equal unit electrostatic charges are separated by a unit distance, they exert 
a unit force on each other according to Eq. (3). By combining this last equation with 
Eq. (3) it is possible to write 22 /' reecF = , where e and e’ are the charges in 
electromagnetic units ( K c3

2=  in electromagnetic measure). If two equal unit 
electromagnetic charges are separated by a unit distance they exert on each other a 
force of magnitude 2c  units of force. In order to generate a unit force (as two unit 
electrostatic forces do), it is necessary to have e = e’ = c electromagnetic units. 
Analogously the constant ccW  2=  is the ratio of the electrodynamic and 
electrostatic units of charge. 

Charges are usually obtained in electrostatic units, measuring directly the force 
between charged bodies. Currents, on the other hand, are usually obtained in 
electromagnetic units. That is, the force is measured between current carrying 
circuits or the deflection of a galvanometer (torque due to the forces between current 
carrying conductors). Alternatively it can be measured the torque or deflection of a 
small magnet due to a current carrying wire. But in order to know the numerical 
value of 53 / KK  it is necessary to measure electrostatically the force between two 
charged bodies, discharge them and measure this current electromagnetically. Then 
it will be possible to express currents (and charges) measured in electromagnetic 
units in terms of currents (and charges) expressed in electrostatic units.  

The first measurement of cW  was performed by Weber and Kohlrausch in 1855, 
when there was the first public announcement of its value.27 The complete paper 
 
27 WEBER (1855). 
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was published in 1857.28 An abstract of this paper appeared 1956 in Weber and 
Kohlrausch,29 with English translation in 1996.30 Weber and Kohlrausch found 

smccW /1039.42 8 ×== , such that smc /101.3 8×= . This was one of the first 
quantitative measurements indicating a possible connection between 
electromagnetism and optics. Discussions of this measurement can be found in: 
Kirchner,31 Wiederkehr32,39 Woodruff33,35 Rosenfeld34,15 Wise,36 Harman,37 
Jungnickel and McCormmach,38 and D’Agostino.40 
 

5. Propagation of Electromagnetic Signals 
The first to derive the correct equations describing the propagation of 
electromagnetic signals in wires (telegraphy equation) were Weber and Kirchhoff in 
1857, before the works of Maxwell and Heaviside. Kirchhoff worked with Weber's 
action at a distance theory and has three main papers related directly with this, one 
of 1850 and two of 1857, all of them have been translated to English.41,42,43 Weber’s 
simultaneous and more thorough work was delayed in publication and appeared 
only in 1864.44 Both worked independently of one another and predicted the 
existence of periodic modes of oscillation of the electric current propagating at light 
velocity in a conducting circuit of negligible resistance. 

A discussion of the procedure followed by Kirchhoff in modern notation 
utilizing the International System of Units MKSA has been given in Assis.45,1 It is 
presented here once more for the sake of completeness. In Assis46 this approach was 

 
28 KOHLRAUSCH  and WEBER (1857). 
29 WEBER and KOHLRAUSCH (1956). 
30 WEBER and KOHLRAUSCH (1996). 
31 KIRCHNER (1957). 
32 WIEDERKEHR (1967), pp. 138-41.  
39 WIEDERKEHR (1994). 
33 WOODRUFF (1968). 
35 WOODRUFF (1976). 
34 ROSENFELD (1973). 
36 WISE (1981). 
37 HARMAN (1982). 
38 JUNGNICKEL and MCCORMMACH (1986), pp. 144-6 and 296-7. 
40 D’AGOSTINO (1996). 
41 KIRCHHOFF (1950). 
42 KIRCHHOFF (1957). 
43 GRANEAU and ASSIS (1994). 
44 WEBER (1864). 
45 ASSIS (1999b). 
46 ASSIS (2000b). 
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applied to the case of coaxial cables, which had not been considered by Kirchhoff 
and Weber. 

In his first paper of 1857, Kirchhoff considered a conducting circuit of circular 
cross section which might be open or closed in a generic form. He wrote Ohm’s law 
taking into account the free electricity along the surface of the wire and the 
induction due to the alteration of the value of the current in all parts of the wire, 
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Considering that 2 απJI =  and that ) /( 2απ gR l=  is the resistance of the wire, 
the longitudinal component of Ohm’s law could then be written as 
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where ξ  can represent I, σ , φ  or the longitudinal component of A
r

. If the 
resistance is negligible, this equation predicts the propagation of signals along the 
wire with light velocity. 

Although in this derivation the interaction between any two charges is given by 
Weber's action at a distance law, the collective behavior of the disturbance 
propagates at light velocity along the wire. This is somewhat similar to the 
propagation of sound waves derived by Newton or the propagation of signals along 
a stretched string obtained by d’Alembert. In all these cases classical Newtonian 
mechanics was employed, without time retardation, without displacement current 
and without any field propagating at a finite speed. Although the interaction of any 
two particles in all these cases was of the type action at a distance, the collective 
behavior of the signal or disturbance did travel at a finite speed. 

In these cases there is a many-body system (molecules in the air, molecules in the 
string or charges in the wire) in which the particles had inertia. Is it possible to derive 
the propagation of electromagnetic signals in vacuum, as in radio communication, by 
an action at a distance theory? I believe the answer to this question is positive. In 
practice there is never only a two-body system. In any antenna there are many charged 
particles. Even if the material medium (like air) between two antennae is removed, 
there is always a gas of photons in the space between them. It is possible that each 
photon be like an electric dipole, with the opposite charges oscillating or vibrating, 
while at the same time the photon as a whole moves with light velocity. The action at a 
distance between the charges in both antennae with one another and with the gas of 
photons in the intervening space may give rise to a collective behavior which is called 
electromagnetic radiation propagating at light velocity. Moreover, by Mach’s principle 
the distant universe must always be taken into account. After all, the inertial properties 
of any charge is due to its gravitational interaction with the distant matter in the 
cosmos.15 For this reason there is always a many body interaction in any real situation. 
This means that there may be expected the derivation of the propagation of 
electromagnetic signals in vacuum moving at light velocity, supposing only Weber’s 
action at a distance force law, by analogy with what Kirchhoff and Weber 
accomplished in the case of telegraphy. 
 

6. Conclusion and Discussion 

The constant c (or ccW  2= ) was introduced in electromagnetic theory by Weber 
in 1846. His goal was to unify electrostatics (Coulomb’s force) with 
electrodynamics (Ampère’s force) in a single force law. It is the ratio of 
electromagnetic (or electrodynamic) and electrostatic units of charge. Weber was 
also the first to measure this quantity working together with Kohlrausch. Their work 
is from 1855 and they obtained smc /101.3 8×=  (or smcW /104.4 8×= ). Weber 
and Kirchhoff were also the first to obtain the equation of telegraphy describing the 
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propagation of electromagnetic signals along wires. In the case of negligible 
resistance they obtained the wave equation with a characteristic velocity given by c. 
These were some of the first connections between electromagnetism and optics as 
the value of light velocity was known to be sm /103 8× , the same value obtained 
for c by Weber and Kohlrausch’s experiment. 

It should be mentioned that one of the meanings which Weber gave to the 
constant Wc  was that of a limiting velocity. That is, according to Weber’s force if 
two charges are approaching or moving away from one another with a constant 
relative radial velocity Wcr ±=& , such that 0=r&& , then the net force between them 
would be zero.  

The electrostatic force would be cancelled by the component of the force which 
depends on the relative velocity and they would move with constant velocities (if 
they were not interacting with other bodies), as if the other charge did not exist. It 
seems to me that Weber was one of the first to speak of a limit velocity in physics 
connected with a dynamical force law. 

It should be stressed that the works of Weber and Kirchhoff in 1856-57 were 
performed before Maxwell wrote down his equations in 1864. When Maxwell 
introduced the displacement current tEc  / )/1( 2 ∂∂

r
 he was utilizing Weber’s 

constant c. He was also aware of Weber and Kohlrausch's measurement of 1855 that 
c had the same value as light velocity. He also knew Weber and Kirchhoff’s 
derivation of the telegraphy equation yielding the propagation of electromagnetic 
signals at light velocity.  

For detailed work describing the link between Weber’s electrodynamics and 
Maxwell’s electromagnetic theory of light the following works are recommended: 
Wiederkehr39 and D’Agostino.40 
 
 
(The author wishes to thank the Alexander von Humboldt Foundation, Germany, for a 
Research Fellowship during which this work was completed. He thanks also Drs. K. H. 
Wiederkehr, K. Reich, J. Guala-Valverde, R. Nunes, L. Hecht, R. de A. Martins, P. Graneau, 
C. Dulaney and F. Doran for discussion about these topics along the years.) 
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