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Abstract
In  this  presentation  a  number  of  animations  and  simulations  are  utilized  to
understand and teach some of the pendulum’s interpretations related to what we now
see as the history of energy conservation  ideas.  That is,  the accent  is  not on the
pendulum as a time meter but as a constrained fall device, a view that Kuhn refers
back to Aristotle. The actors of this story are Galileo, Huygens, Daniel Bernoulli,
Mach and Feynman (Leibniz’s contributions, however important, are not discussed
here). The “phenomenon” dealt with is the swinging body. Galileo, focussing on the
heights of descent and ascent rather than on trajectories, interprets the swinging body
in  both  ways  (time  meter  and  constrained  fall),  establishes  an  analogy  between
pendulums and inclined planes  and eventually gets  to  the free fall  law. Huygens
expands the analysis to the compound (physical) pendulum and as a by-product of
the search for the centre of oscillation (time meter) formulates a version of the vis
viva  conservation  law  (constrained  fall).  Both  Galileo  and  Huygens  assume the
impossibility of perpetual motion and Mach’s history will later outline and clarify the
issues. Daniel Bernoulli generalises Huygens results and formulates for the first time
the concept of potential  and the related independence of the work done from the
trajectories  (paths)  followed:  vis  viva  conservation  at  specific  positions  is  now
linked  with  the  potential.  Feynman’s  modern way of  teaching  the  subject  shows
striking similarities.
Multimedia devices enormously increase the possibility of understanding what is a
rather physically complex and historically intriguing problem. Teachers and students
are in this way introduced to the beauties of epoch-making scientific research and to
its epistemological implications.

1. A swinging body and a gestalt switch: constrained fall and isochronism
In Thomas Kuhn’s Structure of  Scientific Revolutions we read:
“Since remote antiquity most people have seen one or another heavy body swinging
back and forth on a string or chain until it finally comes to rest.”



But did they “see” the same “thing”? 
“To the Aristotelians, who believed that a heavy body is moved by its own nature
from a higher position to a state of natural rest at a lower one, the swinging body was
simply falling with difficulty. Constrained by the chain, it could achieve rest at its
low point only after a tortuous motion and a considerable time. Galileo, on the other
hand, looking at the swinging body, saw a pendulum, a body that almost succeeded
in repeating the same motion over and over again ad infinitum.”
Two  interpretations  are  available  and  here  the  focus  is  on  the  Gestalt  switch
available to a number of important scientists, our actors, observing a swinging body:
the one between constrained fall and isochronism of oscillations. 
While at a first reading Kuhn attributes the first to the Aristotelians and the second to
Galileo, it is actually well known that the “swinging body” played a main role in
Galileo’s (and Newton’s) interpretations of the fall of bodies.
We propose here to see in the works of Galileo, Huygens and Daniel Bernoulli this
capability of “swinging” between the two interpretations of what is, from Galileo on,
a “pendulum”. 
Hoping that teachers and students might eventually do the same, we will tell a story
dealing with the less  well-known but  more ancient  interpretation  of the swinging
body: the one that still  sees it as a constrained fall  (even if in a vacuum). It will
deliver a number of unexpected goods and introduce us to the concept of “potential”
and  eventually  to  the  interplay between “actual” and  “potential”  “energy” in  the
principle of energy conservation. It is no wonder there is a claim that this tradition
started with Aristotle (and in “modern” times continued through Leibniz).

2. Galileo: equal heights of ascent and descent; the law of free fall
The basic assumption Galileo makes observing the swinging body appears at an early
stage of his career. In fact studying the constrained fall on an inclined plane Galileo
in his “De motu” (On Motion), written between 1589 and 1592, asserts that:
“[…] a heavy body tends downward with as much force as it is necessary to lift it
up”
This is a shift of attention, from the actual movement and the actual trajectory of the
body to the height of descent and of ascent. In 1638 a full and mature expression is
found in the Discorsi (First Day):
“As may be clearly seen in the case of a rather heavy pendulum which, when pulled
aside fifty or sixty degrees from the vertical, will acquire precisely that speed and
force (virtù) which are sufficient to carry it to an equal elevation save only that small
portion which it loses through friction on the air.”
Certainly  this  shift  of  attention  to  the  height  of  descent  and  of  ascent  in  the
constrained  fall  was  not  an  easy step.  Obviously  it  was  not  an  observation:  the
pendulum in standard conditions does not rise to the same height of descent, as can
be seen also through a computer simulation: 



Simulation of pendulum motion with and without air

But it is easy today to show what Galileo had in mind: removing “impediments” such
as  air  resistance,  the  pendulum  actually  oscillates  in  agreement  with  Galileo’s
assumption.
The main assumption of the third day of the Discorsi is that:
“The speeds acquired by one and the same body moving down planes of different
inclinations are equal when the heights of these planes are equal.”
This means that the final velocity of fall depends on the vertical height of descent
(elevation) and not on the trajectories actually followed (inclinations).
A  correspondence  is  established  between  pendulum trajectories  and  planes  with
differing  inclinations.  It  is  now  in  fact  a  “constrained”  pendulum  motion  that
“establishes” the assumption: the accent is not on the trajectories but on the initial
and final heights:

Here again a reconstruction and an animation can help us “see” that when the fall of
the pendulum is constrained by nails  fixed on the vertical,  whenever possible the



weight rises at the same height, even if not in a symmetrical position, and when even
that becomes impossible (the nail is in such a position that the length of the string
left  free  is  too  short)  it  shows it  still  has  a  capacity of  movement that  makes it
revolve around the “impediment”.

But what lies behind Galileo’s assumption? The principle, already expressed long
before by Leonardo, that bodies cannot be raised to a higher level uniquely by virtue
of their own weight, an early statement of the principle of impossibility of perpetual
motion. The bob of the pendulum in its periodical idealised motion cannot rise at a
higher  or  lower  level  than  that  of  the  first  descent;  otherwise  work  would  be
produced out of nothing.
The important quantity connected with the initial and final height is thus the velocity
acquired during the fall. To every height of fall corresponds a final velocity acquired
during the fall. A link between a static, positional, quantity (height) and a cinematic
one (velocity) is pointed to. 
Which is the mathematical relation that connects the two?
A simulation can simplify the understanding of Galileo’s procedures in the famous
passage of the Discorsi:

 



The height of fall plays a double role here, in the initial position of the ball on the
inclined plane and in the level of the water in the water vessel: the water vessel is
large and the tube, leading to the tap, thin so that the height of fall of the water is
basically constant. This, assuming a relation between the height of the level of the
water in the vessel and the velocity of the falling water through the tap, allows a
constant flux of water and thus the precision of the time measurement. 
The results of Galileo’s efforts can be summarised in modern terms as follows (g is
the  gravity  acceleration,  a=gsinθ is  the  acceleration  that  varies  with  inclination,
s=h/sinθ is the length of the inclined plane, h its height)

 the instantaneous velocity is proportional to the time elapsed: v=at

 space is proportional to square times: s=at2/2

 from a) and b) we get: s=v2/2a,
 that is: 

 the final velocity is proportional to the square root of the height vf= √2gh
This  is  a  basic  law because  it  connects,  perhaps  for  the  first  time, position  and
velocities, statics and kinematics. One of the extraordinary features of this law, lost
in modern textbooks, is that the two quantities, position and velocity, are not taken at
the same instant.  The velocity is  the one that  the body acquires  falling  from the
height, that is, it is the “virtual” or “potential” velocity that it would acquire if it fell
from that height. Reversing the two we can also say that a body with such a velocity
can raise itself to such a position. The pendulum thus acquires a new meaning: in the
first quarter of period the weight falling acquires a velocity that, without friction and
other impediments, will raise it on the symmetrical side in the second quarter to the
same height of descent. The same happens in the third and fourth quarters till the
weight reacquires its original height.

3. Huygens: from the centre of oscillation of a compound pendulum to vis
viva conservation at specific positions

In  1673  Christiaan  Huygens  in  his  Horologium  Oscillatorium gives  a  relevant
contribution  to our story solving a difficult and important problem. Pendulums in
nature are not ideal objects, but real ones with weights that are not concentrated in a
point at the end of a weightless string. In the context of his time measuring efforts,
Huygens needed an answer to the question:  what is the centre of oscillation  of a
compound pendulum? That is: what is the length of a simple pendulum that oscillates
with the same period of the compound pendulum given? The search for the solution
of  this  problem,  perhaps  the  greatest  among  his  many  achievements,  produced
important results also for our story of the constrained fall. Huygens’ early attempts
date back to 1661 and 1664 but we refer here to the 1673 account.
Huygens, generalising Galileo’s approach, formulates two basic assumptions and a
number of propositions. While Galileo was concerned with a single body, Huygens



deals with a number of them, that is with a system of connected bodies, and thus his
concern is with their centre of gravity. The first hypothesis asserts that
“If any number of weights begin to move by the force of their own gravity, their
centre of gravity cannot rise higher than the place at  which it  was located at  the
beginning of the motion”.
This  statement  in  its  apparent  simplicity  will  have  the  most  extraordinary
consequences.  It  is  no  wonder  then  that  Huygens makes an  effort  to  explain  its
meaning. He actually states here, and a number of times after, that the real content of
the hypothesis is simply that bodies cannot “uniquely by virtue of their own weight”
rise at a height higher than the one of fall,  a statement that,  he asserts,  is largely
shared.
But now Huygens introduces a comment that was implicit in Galileo’s Discorsi:
“Indeed, if those builders of new machines who tried in vain to produce perpetual
motion [motum perpetuum] had known how to use this hypothesis, they would have
easily seen their errors and would have understood that this is in no way possible
through mechanical means [mechanica ratione]”
In modern terms: a quantity of work cannot be produced without a corresponding
compensation, perpetual motion is impossible.
A second hypothesis follows:
“Air and any other manifest impediment having been removed, as we wish to be
understood  in  the  following  demonstrations,  the  center of  gravity  of  a  rotating
pendulum crosses through equal arcs in descending and in ascending”
In fact one cannot imagine a pendulum that after each two quarters of period rises
“uniquely by virtue of its  own weight” to a  higher  position! But Huygens’ great
achievement here is to apply this principle to the centre of gravity of the compound
pendulum.  From  this  extension  of  a  Galilean  line  of  thought  extraordinary
consequences will follow.
Huygens, in proposition III specifies that  H= Σmiri/Σmi  (where  H is  the height  of
ascent-descent  of the center of gravity, mi are the weights and ri their  heights  of
ascent-descent), and  in  proposition  IV states  that  the  removal  of  the  constraints
between the bodies or parts of the bodies does not influence the equivalence between
height  of  ascent and descent.  In modern words: these constraints  do not  perform
work.
“Assume that a pendulum is composed of many weights and, beginning from rest,
has completed any part of its whole oscillation. Imagine next that the common bond
between the weights  has  been broken and that  each weight  converts  its  acquired
velocity upwards and rises as high as it can. Granting all this, the common centre of
gravity will return to the same height which it had before the oscillation began.”



Huygens Mach
4. Mach’s version

We  follow  here,  for  pedagogical  purposes,  Mach’s  version  of  this  important
formulation: the centre of gravity regains its initial height not only after a free fall
and a free ascent, not only after a constrained fall and a constrained ascent, but also
after a constrained fall and a free ascent.
If the constraints are removed at the end of the first quarter of period on the vertical
line, the pendulum’s weights can move freely in the second quarter with the initial
velocities  equal  to  the  final  velocities  of  constrained  fall  acquired.  Some of  the
weights will rise at a lower level than in the case of free fall and some to a higher
level. If we manage to record the maximum height of ascent of the single weights
(due to differing lengths of the pendulums they will be reached in differing times) we
could calculate the position of the centre of gravity and understand that Huygens’
hypotheses are correct.
How to remove the constraints without perturbing the motions?
We imagine that  on  the  vertical  line  at  the  end  of  the  first  quarter  of  period  a
compound  pendulum  made  by  weights  (iron  balls  or  marbles)  connected  by  a
weightless  constraint  (balsa  wood)  hits  an  equal  number  of  equal  weights
individually  suspended  and  thus  free  to  move.  Assuming  the  conservation  of
momentum in the impact we see that the weights rise to different heights, higher or
lower, in agreement with Huygens’ statements. We also realise the difficulty of a
precise experimental assessment of the hypothesis.



A visualization can be achieved through a computer animation
The  automatic  removal  of  the  constraints,  the  tracking  that  shows  the  different
maximum heights  of  ascent,  and the automatic  calculation of  the position  of  the
centre of gravity are of great help not  in proving the hypotheses (the software is
build around the mechanical laws we are dealing with) but in understanding them.
As to free descent, according to Galileo’s result, the vertical distance covered by a
heavy body in free fall starting from rest is proportional to the square of the velocity
acquired in the fall, with which velocity it could rise to the same height. Applying
the relation vf= √2gh to each free falling weight:

Σmiri = Σmivi
2/2g

In the case of the constrained descent we can detect the individual velocities only
through the individual heights of free ascent (experimentally found) in the second
quarter of period. But now we can apply Galileo’s relation to the heights of ascent
and express the final velocities of the constrained fall with the same law (the letter u
is used to indicate velocities acquired in the constrained fall):

Σmir’i = Σmiui
2/2g

Thus the result of the equivalence of the height of ascent and descent of the centre of
gravity is:

Σmivi
2/2gΣmi= Σmiui

2/2gΣmi

and thus: Σmivi
2= Σmiui

2

Thus Huygens’ result  consists  in this:  for  a system of bodies under the effect of
gravity, the sum of the products of the masses multiplied by the squares of the final
velocities is the same, whether the bodies move constrained together or whether they
move freely from the same vertical height. It appears from this result that Σmivi

2 is an
important quantity, which is characteristic of the position of the system (its vertical
height) and does not depend on the paths followed to get to that position, under the
assumed conditions. Again we have to remember that in this quantity, characteristic
of a system in a given position, the velocities, whether constrained or free, are the
final velocities of the “virtual” or “potential” fall.
Thus the (compound) pendulum has delivered a very good result: it helped identify
one very important physical quantity, to be called “vis viva”, the “modern” capacity
of a body to perform “work”, its dependence on the position of the system of bodies
and its independence from those constraints which do not perform “work”. Returning
back to the initial position (completing a closed path) the value of the vis viva does
not change, it does not depend on the actual trajectories: it is a constant of the system



for a given position. Here this is the meaning of “conservation of vis viva”. In fact
the “vis viva” during motion varies at each instant, given the variation of the actual
velocities.

5. Bernoulli and the birth of the potential

In his Hydrodynamica of 1738 Daniel Bernoulli (the first to introduce the potential
function)  discusses  at  length  the  relations  between  “descensus  actualis”  and
“ascensus potentialis” 
In his approach of 1748 to our theme the starting point is the conservation of vis viva
derived from Huygens’ results:

How can this  law be utilized to connect velocities  and external  forces?  Through
Galileo’s theorem: in fact, in the case of uniform and parallel gravity, the square of
the velocity gained is proportional to the displacement and since this is independent
from the path of the body: “there is always conservation of vis viva with respect to
the height from which the fall takes place”.
Assuming the acceleration of gravity as equal to unity and the vertical fall distances
equal to x, x’ and so on:

the expression of conservation of vis viva becomes 

and thus “the total vis viva is equal to the product of the total mass of the system
with twice the vertical distance the centre falls”.
From a modern point of view, the second member expresses double the “work” done
by  the  forces  acting  on  the  system  (in  this  case  central  forces  and  unity  of
acceleration):  force  (mass  time  acceleration)  time  distance.  The  vis  viva  of  the
system in a certain position (velocities are here still the final velocities of a potential
fall) equals the “work” done to get to that  position  or the capacity to do “work”
falling from that position. 
The variation of vis viva depends on the distance and not on the trajectory: vis viva
at D and C is the same, moving from C to D there is no change of vis viva (no
“work” is  done along paths  perpendicular  to the force, the difference in vis  viva
between A and D thus does not depend on the trajectory followed, straight  down
from A to D or through C). Vis viva at D depends only on the distance to the centre
of attraction, it is now a positional quantity. In the closed path DACD there is no
gain or loss of “work”. The difference of “work” depends only on the initial or final
positions  and not  on the path.  The “positional”  vis  viva is  thus  an indication of
potential “work”, later to be called potential energy. The variation of the vis viva is
equal to the variation of the potential “work”.
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D.Bernoulli R.Feynman

 6. Modern textbooks still utilize Bernoulli’s approach

Feynman’s 1963  Lectures  in  Physics,  is  revealing.  In  discussing  work  done  by
gravity, Feynman wants to show that the total work done in going around a complete
cycle is zero, in agreement with the impossibility of perpetual motion.
He thus analyses a closed path in a gravitational field and shows that on the circular
paths the work is zero because the force is at right angles to the curve, and on the
radial paths the total work is again zero because it is the sum of the same amount of
work done once in the direction of the centre of attraction and the second in the
opposite one.
Is the situation different for a real curve? No, because we can refer back to the same
analysis: the work done in going from a to b and b to c on a triangle is the same as
the work done in going directly from a to c. In the same chapter Feynman, dealing
with planetary motion, asserts that:
“So long as we come back to the same distance, the kinetic energy will be the same.
So whether the motion is  the real  undisturbed  one, or is  changed in direction by
channels, by frictionless constraints, the kinetic energy with which the planet arrives
at a point will be the same.”
A clear, even if implicit and perhaps unaware, reference to Daniel Bernoulli’s results
(through the mediation of the tradition of rational mechanics): work only depends on
the initial  and final  positions (difference of potential)  and not on the actual  path
(trajectory).



Thus the insight  that  pendulums without  impediments can only rise back to their
original heights has produced, through a number of achievements, a very important
and lasting historical result: from vis viva conservation at specific positions we get
the concept of potential, a remarkable gestalt switch from isochronism and a big step
towards what is now energy conservation. 
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